1 | //Author-Snigdha Chandan Khilar
|
---|
2 | #include<stdio.h>
|
---|
3 | #include<conio.h>
|
---|
4 | #include<math.h>
|
---|
5 | #include<fstream>
|
---|
6 | #include<vector>
|
---|
7 | #define numinput 4
|
---|
8 | #define numoutput 3
|
---|
9 | using namespace std;
|
---|
10 | double getRand(void){return ((double)rand())/(double)RAND_MAX;}
|
---|
11 | double activation_function(double val)
|
---|
12 | {
|
---|
13 | double v=val;
|
---|
14 | v=(1+exp(-v));
|
---|
15 | return 1/v;
|
---|
16 | }
|
---|
17 | int main()
|
---|
18 | {
|
---|
19 | int i,j=0,k=0,l,var,numhidden,bias=1,epoch;
|
---|
20 | int train_class[150],test_class[30],data_class[150];
|
---|
21 | double attr,sum,IH,HO;
|
---|
22 | double sepal_length[150],sepal_width[150],petal_length[150],petal_width[150];
|
---|
23 | double sepal_length_testing[30],sepal_width_testing[30],petal_length_testing[30],petal_width_testing[30];
|
---|
24 | double sepal_length_training[150],sepal_width_training[150],petal_length_training[150],petal_width_training[150];
|
---|
25 | ifstream infile;
|
---|
26 | infile.open("data.txt");
|
---|
27 | ofstream outfile1("training.txt");
|
---|
28 | ofstream outfile2("testing.txt");
|
---|
29 | if(infile.is_open())
|
---|
30 | {
|
---|
31 | for(i=0;!infile.eof();i++)
|
---|
32 | {
|
---|
33 | infile>>attr;
|
---|
34 | sepal_length[i]=attr;
|
---|
35 | infile>>attr;
|
---|
36 | sepal_width[i]=attr;
|
---|
37 | infile>>attr;
|
---|
38 | petal_length[i]=attr;
|
---|
39 | infile>>attr;
|
---|
40 | petal_width[i]=attr;
|
---|
41 | infile>>var;
|
---|
42 | data_class[i]=var;
|
---|
43 | }
|
---|
44 | }
|
---|
45 | infile.close();
|
---|
46 | for(i=1;i<=150;i++)
|
---|
47 | {
|
---|
48 | if(i%5==0)
|
---|
49 | {
|
---|
50 |
|
---|
51 | sepal_length_testing [j]=sepal_length[i];
|
---|
52 | sepal_width_testing[j]=sepal_width[i];
|
---|
53 | petal_length_testing[j]=petal_length[i];
|
---|
54 | petal_width_testing [j]=petal_width[i];
|
---|
55 | test_class[j]=data_class[i];
|
---|
56 | outfile2<<sepal_length[i]<<" "<<sepal_width[i]<<" "<<petal_length[i]<<" "<<petal_width[i]<<" => "<<data_class[i]<<endl;
|
---|
57 | j++;
|
---|
58 | }
|
---|
59 | else
|
---|
60 | {
|
---|
61 | sepal_length_training[k]=sepal_length[i];
|
---|
62 | sepal_width_training[k]=sepal_width[i];
|
---|
63 | petal_length_training[k]=petal_length[i];
|
---|
64 | petal_width_training[k]=petal_width[i];
|
---|
65 | train_class[k]=data_class[i];
|
---|
66 | outfile1<<sepal_length[i]<<" "<<sepal_width[i]<<" "<<petal_length[i]<<" "<<petal_width[i]<<" "<<data_class[i]<<endl<<endl;
|
---|
67 | k++;
|
---|
68 | }
|
---|
69 |
|
---|
70 | }
|
---|
71 | outfile1.close();
|
---|
72 | outfile2.close();
|
---|
73 | printf("\n\nEnter the number of neurons in the input layer is 4.\n");
|
---|
74 | printf("\nEnter the number of neurons in the output layer is 3.\n");
|
---|
75 | printf("\nEnter the number of neurons in the hidden layer :(1-4) \n");
|
---|
76 | scanf("%d",&numhidden);
|
---|
77 | printf("\nEnter the number of epochs :");
|
---|
78 | scanf("%d",&epoch);
|
---|
79 | printf("\nEnter learning rate for Input Layer-Hidden Layer (0.07-0.7):");
|
---|
80 | scanf("%lf",&IH);
|
---|
81 | printf("\nEnter learning rate for Hidden Layer-Output Layer (0.07-0.7):");
|
---|
82 | scanf("%lf",&HO);
|
---|
83 | double wgtIH[numhidden][numinput],wgtHO[numoutput][numhidden];
|
---|
84 | double hidden[numhidden+1],input[numinput+1],output[numoutput];
|
---|
85 | double err_o[numoutput],err_h[numhidden];
|
---|
86 | for(i=0;i<numhidden;i++)
|
---|
87 | {
|
---|
88 | for(j=0;j<numinput;j++)
|
---|
89 | wgtIH[i][j]=0;
|
---|
90 | }
|
---|
91 | for(i=0;i<numoutput;i++)
|
---|
92 | {
|
---|
93 | for(j=0;j<numhidden;j++)
|
---|
94 | wgtHO[i][j]=0;
|
---|
95 | }
|
---|
96 | //Initialize Random Weights From Input Layer to Hidden Layer
|
---|
97 | for(i=0;i<numhidden+1;i++)
|
---|
98 | {
|
---|
99 | for(j=0;j<numinput+1;j++)
|
---|
100 | wgtIH[i][j]=(getRand())/5;
|
---|
101 | }
|
---|
102 | //Initialize Random Weights From Hidden Layer to Output Layer
|
---|
103 | for(i=0;i<numoutput;i++)
|
---|
104 | {
|
---|
105 | for(j=0;j<numhidden+1;j++)
|
---|
106 | wgtHO[i][j]=(getRand())/5;
|
---|
107 | }
|
---|
108 | while(epoch--)
|
---|
109 | {
|
---|
110 | for(l=0;l<120;l++)
|
---|
111 | {
|
---|
112 |
|
---|
113 | input[0]=sepal_length_training[l];
|
---|
114 | input[1]=sepal_width_training[l];
|
---|
115 | input[2]=petal_length_training[l];
|
---|
116 | input[3]=petal_width_training[l];
|
---|
117 | input[4]=bias;
|
---|
118 | for(i=0;i<numhidden+1;i++)
|
---|
119 | {
|
---|
120 | sum=0.0;
|
---|
121 | for(j=0;j<numinput+1;j++)
|
---|
122 | sum=sum+wgtIH[i][j]*input[j];
|
---|
123 | sum=activation_function(sum);
|
---|
124 | hidden[i]=sum;
|
---|
125 | }
|
---|
126 | for(i=0;i<numoutput;i++)
|
---|
127 | {
|
---|
128 | sum=0.0;
|
---|
129 | for(j=0;j<numhidden+1;j++)
|
---|
130 | sum=sum+wgtHO[i][j]*hidden[j];
|
---|
131 | sum=activation_function(sum);
|
---|
132 | output[i]=sum;
|
---|
133 | }
|
---|
134 | // error calcalutaion @output layer
|
---|
135 | if(train_class[l]==1)
|
---|
136 | {
|
---|
137 | if(output[0]<0.8)
|
---|
138 | err_o[0]=output[0]*(1-output[0])*(1-output[0]);
|
---|
139 | else
|
---|
140 | err_o[0]=0;
|
---|
141 | if(output[1]>0.2)
|
---|
142 | err_o[1]=output[1]*(1-output[1])*(-output[1]);
|
---|
143 | else
|
---|
144 | err_o[1]=0;
|
---|
145 | if(output[2]>0.2)
|
---|
146 | err_o[2]=output[2]*(1-output[2])*(-output[2]);
|
---|
147 | else
|
---|
148 | err_o[2]=0;
|
---|
149 | }
|
---|
150 | else if(train_class[l]==2)
|
---|
151 | {
|
---|
152 | if(output[0]>0.2)
|
---|
153 | err_o[0]=output[0]*(1-output[0])*(-output[0]);
|
---|
154 | else
|
---|
155 | err_o[0]=0;
|
---|
156 | if(output[1]<0.8)
|
---|
157 | err_o[1]=output[1]*(1-output[1])*(1-output[1]);
|
---|
158 | else
|
---|
159 | err_o[1]=0;
|
---|
160 | if(output[2]>0.2)
|
---|
161 | err_o[2]=output[2]*(1-output[2])*(-output[2]);
|
---|
162 | else
|
---|
163 | err_o[2]=0;
|
---|
164 |
|
---|
165 | }
|
---|
166 | else if(train_class[l]==3)
|
---|
167 | {
|
---|
168 |
|
---|
169 | if(output[0]>0.2)
|
---|
170 | err_o[0]=output[0]*(1-output[0])*(-output[0]);
|
---|
171 | else
|
---|
172 | err_o[0]=0;
|
---|
173 | if(output[1]>0.2)
|
---|
174 | err_o[1]=output[1]*(1-output[1])*(-output[1]);
|
---|
175 | else
|
---|
176 | err_o[1]=0;
|
---|
177 | if(output[2]<0.8)
|
---|
178 | err_o[2]=output[2]*(1-output[2])*(1-output[2]);
|
---|
179 | else
|
---|
180 | err_o[2]=0;
|
---|
181 | }
|
---|
182 |
|
---|
183 | for(i=0;i<numhidden+1;i++)
|
---|
184 | {
|
---|
185 | sum=0.0;
|
---|
186 | for(j=0;j<numoutput;j++)
|
---|
187 | sum+=wgtHO[i][j]*err_o[j];
|
---|
188 | err_h[i]=hidden[i]*(1-hidden[i])*sum;
|
---|
189 | }
|
---|
190 |
|
---|
191 | // error calcalutaion @ hiddenlayer layer
|
---|
192 | // hidden to output layerweight updation.
|
---|
193 | for(i=0;i<numoutput;i++)
|
---|
194 | {
|
---|
195 | for(j=0;j<numhidden+1;j++)
|
---|
196 | wgtHO[i][j]+=HO*err_o[i]*hidden[j];
|
---|
197 | }
|
---|
198 | // input to hidden layerweight updation..
|
---|
199 | for(i=0;i<numhidden+1;i++)
|
---|
200 | {
|
---|
201 | for(j=0;j<numinput+1;j++)
|
---|
202 | wgtIH[i][j]+=IH*err_h[i]*input[j];
|
---|
203 | }
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | for(l=0;l<29;l++)
|
---|
208 | {
|
---|
209 |
|
---|
210 | input[0]=sepal_length_testing[l];
|
---|
211 | input[1]=sepal_width_testing[l];
|
---|
212 | input[2]=petal_length_testing[l];
|
---|
213 | input[3]=petal_width_testing[l];
|
---|
214 | input[4]=bias;
|
---|
215 | for(i=0;i<numhidden+1;i++)
|
---|
216 | {
|
---|
217 | sum=0.0;
|
---|
218 | for(j=0;j<numinput+1;j++)
|
---|
219 | {
|
---|
220 | sum=sum+wgtIH[i][j]*input[j];
|
---|
221 | }
|
---|
222 | sum=activation_function(sum);
|
---|
223 | hidden[i]=sum;
|
---|
224 | }
|
---|
225 | for(i=0;i<numoutput;i++)
|
---|
226 | {
|
---|
227 | sum=0.0;
|
---|
228 | for(j=0;j<numhidden+1;j++)
|
---|
229 | sum=sum+wgtHO[i][j]*hidden[j];
|
---|
230 | sum=activation_function(sum);
|
---|
231 | output[i]=sum;
|
---|
232 | }
|
---|
233 | printf("\n\n");
|
---|
234 | for(i=0;i<numoutput;i++)
|
---|
235 | printf("%lf\t",output[i]);
|
---|
236 | if((output[0]>0.8)&&(output[1]<0.2)&&(output[2]<0.2))
|
---|
237 | printf("setosa %d\n\n",test_class[l]);
|
---|
238 | else if((output[0]<0.2)&&(output[1]>0.8)&&(output[2]<0.2))
|
---|
239 | printf("versicolor %d\n\n",test_class[l]);
|
---|
240 | else if((output[0]<0.2)&&(output[1]<0.2)&&(output[2]>0.8))
|
---|
241 | printf("virginea %d\n\n",test_class[l]);
|
---|
242 | else
|
---|
243 | printf("Cannot classify\n\n");
|
---|
244 | }
|
---|
245 | getch();
|
---|
246 | return 0;
|
---|
247 | }
|
---|