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Language modeling approaches to information retrieval are attractive and promising because they
connect the problem of retrieval with that of language model estimation, which has been studied ex-
tensively in other application areas such as speech recognition. The basic idea of these approaches
is to estimate a language model for each document, and to then rank documents by the likelihood of
the query according to the estimated language model. A central issue in language model estimation
is smoothing, the problem of adjusting the maximum likelihood estimator to compensate for data
sparseness. In this article, we study the problem of language model smoothing and its influence on
retrieval performance. We examine the sensitivity of retrieval performance to the smoothing param-
eters and compare several popular smoothing methods on different test collections. Experimental
results show that not only is the retrieval performance generally sensitive to the smoothing param-
eters, but also the sensitivity pattern is affected by the query type, with performance being more
sensitive to smoothing for verbose queries than for keyword queries. Verbose queries also generally
require more aggressive smoothing to achieve optimal performance. This suggests that smoothing
plays two different role—to make the estimated document language model more accurate and to
“explain” the noninformative words in the query. In order to decouple these two distinct roles of
smoothing, we propose a two-stage smoothing strategy, which yields better sensitivity patterns
and facilitates the setting of smoothing parameters automatically. We further propose methods for
estimating the smoothing parameters automatically. Evaluation on five different databases and
four types of queries indicates that the two-stage smoothing method with the proposed parameter
estimation methods consistently gives retrieval performance that is close to—or better than—the
best results achieved using a single smoothing method and exhaustive parameter search on the
test data.
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1. INTRODUCTION

The study of information retrieval models has a long history. Over the decades,
many different types of retrieval models have been proposed and tested. A great
diversity of approaches and methodology has been developed, rather than a
single unified retrieval model that has proven to be most effective; however, the
field has progressed in two different ways. On the one hand, theoretical studies
of an underlying model have been developed; this direction is, for example,
represented by the various kinds of logic models and probabilistic models (e.g.,
van Rijsbergen [1986], Fuhr [1992], Robertson et al. [1981], and Wong and Yao
[1995]). On the other hand, there have been many empirical studies of models,
including variants of the vector space model (e.g., Salton and Buckley [1988,
1990] and Singhal et al. [1996]). In some cases, there have been theoretically
motivated models that also perform well empirically; for example, the BM25
retrieval function, motivated by the 2-Poisson probabilistic retrieval model, has
proven to be quite effective in practice [Robertson et al. 1995].

Recently, a new approach based on language modeling has been successfully
applied to the problem of ad hoc retrieval [Ponte and Croft 1998; Berger and
Lafferty 1999; Miller et al. 1999; Hiemstra and Kraaij 1999]. The basic idea
behind the new approach is extremely simple—estimate a language model for
each document, and rank documents by the likelihood of the query according
to the language model. Yet this new framework is very promising because of
its foundations in statistical theory, the great deal of complementary work on
language modeling in speech recognition and natural language processing, and
the fact that very simple language modeling retrieval methods have performed
quite well empirically.

The term, smoothing, refers to the adjustment of the maximum likelihood
estimator of a language model so that it will be more accurate. At the very least,
it is required to not assign zero probability to unseen words. When estimating
a language model based on a limited amount of text, such as a single document,
smoothing of the maximum likelihood model is extremely important. Indeed,
many language modeling techniques are centered around the issue of smooth-
ing. In the language modeling approach to retrieval, smoothing accuracy is
directly related to retrieval performance. Yet most existing research work has
assumed one method or another for smoothing, and the smoothing effect tends
to be mixed with that of other heuristic techniques. There has been no direct
evaluation of different smoothing methods, and it is unclear how retrieval per-
formance is affected by the choice of a smoothing method and its parameters.

In this article, we study the problem of language model smoothing in the
context of ad hoc retrieval, focusing on the smoothing of document language
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models. The research questions that motivate this work are (1) how sensitive is
retrieval performance to the smoothing of a document language model? and (2)
how should a smoothing method be selected, and how should its parameters be
chosen? We compare several of the most popular smoothing methods that have
been developed in speech and language processing, and study the behavior of
each method.

Our study leads to several interesting and unanticipated conclusions. We find
that the retrieval performance is highly sensitive to the setting of smoothing
parameters. In some sense, smoothing is as important to this new family of re-
trieval models as term weighting is to the traditional models. Interestingly, the
sensitivity pattern and query verbosity are found to be highly correlated. The
performance is more sensitive to smoothing for verbose queries than for key-
word queries. Verbose queries also generally require more aggressive smooth-
ing to achieve optimal performance. This suggests that smoothing plays two
different roles in the query-likelihood ranking method. One role is to improve
the accuracy of the estimated document language model, while the other is to
accommodate the generation of common and noninformative words in a query.

In order to decouple these two distinct roles of smoothing, we propose a two-
stage smoothing strategy, which can reveal more meaningful sensitivity pat-
terns and facilitate the setting of smoothing parameters. We further propose
methods for estimating the smoothing parameters automatically. Evaluation on
five different databases and four types of queries indicates that the two-stage
smoothing method with the proposed parameter estimation methods consis-
tently gives retrieval performance that is close to—or better than—the best
results achieved using a single smoothing method and exhaustive parameter
search on the test data.

The rest of the article is organized as follows: In Section 2, we discuss the lan-
guage modeling approach and its connection with some of the heuristics used
in traditional retrieval models. In Section 3, we describe the three smoothing
methods we evaluated. The major experiments and results are presented in
Sections 4 through 7. In Section 8, we present further experimental results to
support the dual role of smoothing and motivate a two-stage smoothing method,
which is presented in Section 9. In Section 10 and Section 11, we describe pa-
rameter estimation methods for two-stage smoothing, and discuss experimen-
tal results on their effectiveness. Section 12 presents conclusions and outlines
directions for future work.

2. THE LANGUAGE MODELING APPROACH

In the language modeling approach to information retrieval, one considers the
probability of a query as being “generated” by a probabilistic model based on
a document. For a query q = q1q2 · · · qn and document d = d1d2 . . . dm, this
probability is denoted by p(q | d ). In order to rank documents, we are interested
in estimating the posterior probability p(d | q), which from Bayes’ formula is
given by

p(d | q) ∝ p(q | d )p(d ), (1)
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where p(d ) is our prior belief that d is relevant to any query and p(q | d ) is the
query likelihood given the document, which captures how well the document
“fits” the particular query q.

In the simplest case, p(d ) is assumed to be uniform, and so does not af-
fect document ranking. This assumption has been taken in most existing work
[Berger and Lafferty 1999; Ponte and Croft 1998; Ponte 1998; Hiemstra and
Kraaij 1999; Song and Croft 1999]. In other cases, p(d ) can be used to cap-
ture nontextual information, for example, the length of a document or links in
a web page, as well as other format/style features of a document; see Miller
et al. [1999] and Kraaij et al. [2002] for empirical studies that exploit simple
alternative priors.

In our study, we assume a uniform document prior in order to focus on the
effect of smoothing. With a uniform prior, the retrieval model reduces to the
calculation of p(q | d ), which is where language modeling comes in. The lan-
guage model used in most previous work is the unigram model.1 This is the
multinomial model that assigns the probability

p(q | d ) =
n∏

i=1

p(qi | d ). (2)

Clearly, the retrieval problem is now essentially reduced to a unigram language
model estimation problem. In this article, we focus on unigram models only; see
Miller et al. [1999] and Song and Croft [1999] for explorations of bigram and
trigram models.

On the surface, the use of language models appears fundamentally different
from vector space models with TF-IDF weighting schemes, because the unigram
language model only explicitly encodes term frequency—there appears to be no
use of inverse document frequency weighting in the model. However, there
is an interesting connection between the language model approach and the
heuristics used in the traditional models. This connection has much to do with
smoothing, and an appreciation of it helps to gain insight into the language
modeling approach.

Most smoothing methods make use of two distributions, a model ps(w | d )
used for “seen” words that occur in the document, and a model pu(w | d ) for
“unseen” words that do not. The probability of a query q can be written in
terms of these models as follows, where c(w; d ) denotes the count of word w in
d and n is the length of the query:

log p(q | d ) =
n∑

i=1

log p(qi | d ) (3)

=
∑

i:c(qi ;d )>0

log ps(qi | d ) +
∑

i:c(qi ;d )=0

log pu(qi | d ) (4)

=
∑

i:c(qi ;d )>0

log
ps(qi | d )
pu(qi | d )

+
n∑

i=1

log pu(qi | d ) (5)

1The work of Ponte and Croft [1998] adopts something similar to, but slightly different from the
standard unigram model.
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The probability of an unseen word is typically taken as being proportional to
the general frequency of the word, for example, as computed using the document
collection. So, let us assume that pu(qi | d ) = αd p(qi | C), where αd is a document-
dependent constant and p(qi | C) is the collection language model. Now we have

log p(q | d ) =
∑

i:c(qi ;d )>0

log
ps(qi | d )

αd p(qi | C)
+ n log αd +

n∑
i=1

log p(qi | C). (6)

Note that the last term on the righthand side is independent of the document
d , and thus can be ignored in ranking.

Now we can see that the retrieval function can actually be decomposed into
two parts. The first part involves a weight for each term common between the
query and document (i.e., matched terms) and the second part only involves
a document-dependent constant that is related to how much probability mass
will be allocated to unseen words according to the particular smoothing method
used. The weight of a matched term qi can be identified as the logarithm of

ps(qi | d )
αd p(qi | C) , which is directly proportional to the document term frequency, but
inversely proportional to the collection frequency. The computation of this gen-
eral retrieval formula can be carried out very efficiently, since it only involves
a sum over the matched terms.

Thus, the use of p(qi | C) as a reference smoothing distribution has turned out
to play a role very similar to the well-known IDF. The other component in the
formula is just the product of a document-dependent constant and the query
length. We can think of it as playing the role of document length normalization,
which is another important technique to improve performance in traditional
models. Indeed, αd should be closely related to the document length, since one
would expect that a longer document needs less smoothing and as a consequence
has a smaller αd ; thus, a long document incurs a greater penalty than a short
one because of this term.

The connection just derived shows that the use of the collection language
model as a reference model for smoothing document language models implies a
retrieval formula that implements TF-IDF weighting heuristics and document
length normalization. This suggests that smoothing plays a key role in the
language modeling approaches to retrieval. A more restrictive derivation of the
connection was given in Hiemstra and Kraaij [1999].

3. SMOOTHING METHODS

As described above, our goal is to estimate p(w | d ), a unigram language model
based on a given document d . The unsmoothed model is the maximum likeli-
hood estimate, simply given by relative counts

pml(w | d ) = c(w; d )∑
w′∈V c(w′; d )

, (7)

where V is the set of all words in the vocabulary.
However, the maximum likelihood estimator will generally under estimate

the probability of any word unseen in the document, and so the main purpose of
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smoothing is to assign a nonzero probability to the unseen words and improve
the accuracy of word probability estimation in general.

Many smoothing methods have been proposed, mostly in the context of speech
recognition tasks [Chen and Goodman 1998]. In general, smoothing methods
discount the probabilities of the words seen in the text and assign the extra
probability mass to the unseen words according to some “fallback” model. For
information retrieval, it makes sense to exploit the collection language model
as the fallback model. Following Chen and Goodman [1998], we assume the
general form of a smoothed model to be the following:

p(w | d ) =
{

ps(w | d ) if word w is seen
αd p(w | C) otherwise,

(8)

where ps(w | d ) is the smoothed probability of a word seen in the document,
p(w | C) is the collection language model, and αd is a coefficient controlling the
probability mass assigned to unseen words, so that all probabilities sum to one.
In general, αd may depend on d ; if ps(w | d ) is given, we must have

αd = 1 − ∑
w∈V :c(w;d )>0 ps(w | d )

1 − ∑
w∈V :c(w;d )>0 p(w | C)

. (9)

Thus, individual smoothing methods essentially differ in their choice of
ps(w | d ).

A smoothing method may be as simple as adding an extra count to every
word, which is called additive or Laplace smoothing, or more sophisticated
as in Katz smoothing, where words of different count are treated differently.
However, because a retrieval task typically requires efficient computations over
a large collection of documents, our study is constrained by the efficiency of the
smoothing method. We selected three representative methods that are popular
and efficient to implement. Although these three methods are simple, the issues
that they bring to light are relevant to more advanced methods. The three
methods are described below.

The Jelinek–Mercer Method. This method involves a linear interpolation
of the maximum likelihood model with the collection model, using a coefficient
λ to control the influence of each:

pλ(w | d ) = (1 − λ) pml(w | d ) + λp(w | C). (10)

Thus, this is a simple mixture model (but we preserve the name of the more gen-
eral Jelinek–Mercer method which involves deleted-interpolation estimation of
linearly interpolated n-gram models [Jelinek and Mercer 1980]).

Bayesian Smoothing using Dirichlet Priors. A language model is a multi-
nomial distribution, for which the conjugate prior for Bayesian analysis is the
Dirichlet distribution [MacKay and Peto 1995]. We choose the parameters of
the Dirichlet to be

(µp(w1 | C), µp(w2 | C), . . . , µp(wn | C)). (11)
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Table I. Summary of the Three Primary Smoothing Methods Compared in this Article

Method ps(w | d ) αd Parameter

Jelinek–Mercer (1 − λ) pml(w | d ) + λ p(w | C) λ λ

Dirichlet
c(w; d ) + µ p(w | C)

|d | + µ

µ

|d | + µ
µ

Absolute discount
max(c(w; d ) − δ, 0)

|d | + δ |d |u
|d | p(w | C)

δ|d |u
|d | δ

Thus, the model is given by

pµ(w | d ) = c(w; d ) + µp(w | C)∑
w′∈V c(w′; d ) + µ

. (12)

The Laplace method is a special case of this technique.

Absolute Discounting. The idea of the absolute discounting method is to
lower the probability of seen words by subtracting a constant from their counts
[Ney et al. 1994]. It is similar to the Jelinek–Mercer method, but differs in
that it discounts the seen word probability by subtracting a constant instead of
multiplying it by (1-λ). The model is given by

pδ(w | d ) = max(c(w; d ) − δ, 0)∑
w′∈V c(w′; d )

+ σ p(w | C), (13)

where δ ∈ [0, 1] is a discount constant and σ = δ |d |u/|d |, so that all probabil-
ities sum to one. Here |d |u is the number of unique terms in document d , and
|d | is the total count of words in the document, so that |d | = ∑

w′∈V c(w′; d ).
The three methods are summarized in Table I in terms of ps(w | d ) and αd in

the general form. It is easy to see that a larger parameter value means more
smoothing in all cases.

Retrieval using any of the above three methods can be implemented very
efficiently, assuming that the smoothing parameter is given in advance. The αs
can be precomputed for all documents at index time. The weight of a matched
term w can be computed easily based on the collection language model p(w | C),
the query term frequency c(w; q), the document term frequency c(w; d ), and the
smoothing parameters. Indeed, the scoring complexity for a query q is O(k |q |),
where |q | is the query length, and k is the average number of documents in
which a query term occurs. It is as efficient as scoring using a TF-IDF model.

4. EXPERIMENTAL SETUP

Our first goal is to study and compare the behavior of smoothing methods. As
is well-known, the performance of a retrieval algorithm may vary significantly
according to the testing collection used; it is generally desirable to have larger
collections and more queries to compare algorithms. We use five databases from
TREC, including three of the largest testing collections for ad hoc retrieval:
(1) Financial Times on disk 4, (2) FBIS on disk 5, (3) Los Angeles Times on disk
5, (4) Disk 4 and disk 5 minus Congressional Record, used for the TREC7 and
TREC8 ad hoc tasks, and (5) the TREC8 web data.
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Table II. Labels used for Test Collections (top), Statistics of the Five Text
Collections used in Our Study (middle), and Queries used for Testing (bottom)

Queries
Collection 351-400 (Trec7) 401-450 (Trec8)

Title Long Title Long

FBIS fbis7T fbis7L fbis8T fbis8L
FT ft7T ft7L ft8T ft8L
LA la7T la7L la8T la8L
TREC7&8 trec7T trec7L trec8T trec8L
WEB N/A web8T web8L

Collection size #term #doc avgDocLen maxDocLen
FBIS 370MB 318,025 130,471 516 139,709
FT 446MB 259,685 209,097 394 16,021
LA 357MB 272,880 131,896 505 24,653
TREC7&8 1.36GB 747,991 527,094 474 154,322
WEB 1.26GB 1,761,265 227,724 980 332,383

Query set min#term avg#term max#term
Trec7-Title 1 2.5 4
Trec7-Long 31 57.5 106
Trec8-Title 1 2.44 4
Trec8-Long 23 51.66 98

The queries we use are topics 351–400 (used for the TREC7 ad hoc task),
and topics 401–450 (used for the TREC8 ad hoc and web tasks). In order to
study the possible interaction of smoothing and query length/type, we use two
different versions of each set of queries: (1) title only and (2) a long version (title
+ description + narrative). The title queries are mostly two or three key words,
whereas the long queries have whole sentences and are much more verbose.

In all our experiments, the only tokenization applied is stemming with a
Porter stemmer. Although stop words are often also removed at the preprocess-
ing time, we deliberately index all of the words in the collections, since we do
not want to be biased by any artificial choice of stop words and we believe that
the effects of stop word removal should be better achieved by exploiting lan-
guage modeling techniques. Stemming, on the other hand, is unlikely to affect
our results on sensitivity analysis; indeed, we could have skipped stemming as
well.

In Table II, we give the labels used for all possible retrieval testing collections,
based on the databases and queries described above.

For each smoothing method and on each testing collection, we experiment
with a wide range of parameter values. In each run, the smoothing parameter is
set to the same value across all queries and documents. Throughout this article,
we follow the standard TREC evaluation procedure for ad hoc retrieval, that
is, for each topic, the performance figures are computed based on the top 1,000
documents in the retrieval results. For the purpose of studying the behavior of
an individual smoothing method, we select a set of representative parameter
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values and examine the sensitivity of noninterpolated average precision to the
variation in these values. For the purpose of comparing smoothing methods,
we first optimize the performance of each method using the noninterpolated
average precision as the optimization criterion, and then compare the best runs
from each method. The optimal parameter is determined by searching over the
entire parameter space.2

5. BEHAVIOR OF INDIVIDUAL METHODS

In this section, we study the behavior of each smoothing method. We first an-
alyze the influence of the smoothing parameter on the term weighting and
document length normalization implied by the corresponding retrieval func-
tion. Then, we examine the sensitivity of retrieval performance by plotting the
noninterpolated average precision against different values of the smoothing
parameter.

5.1 Jelinek–Mercer Smoothing

When using the Jelinek–Mercer smoothing method with a fixed λ, we see that
the parameter αd in our ranking function (see Section 2) is the same for all
documents, so the length normalization term is a constant. This means that
the score can be interpreted as a sum of weights over each matched term. The
term weight is log(1 + (1 − λ)pml(qi|d )/(λp(qi | C))). Thus, a small λ means less
smoothing and more emphasis on relative term weighting. When λ approaches
zero, the weight of each term will be dominated by the term log(1/λ), which is
term-independent, so the scoring formula will be dominated by the coordination
level matching, which is simply the count of matched terms. This means that
documents that match more query terms will be ranked higher than those
that match fewer terms, implying a conjunctive interpretation of the query
terms. On the other hand, when λ approaches one, the weight of a term will
be approximately (1 − λ)pml(qi|d )/(λp(qi | C)), since log(1 + x) ≈ x when x is
very small. Thus, the scoring is essentially based on

∑
i pml(qi|d )/p(qi | C). This

means that the score will be dominated by the term with the highest weight,
implying a disjunctive interpretation of the query terms.

The plots in Figure 1 show the average precision for different settings of λ,
for both large and small collections. It is evident that the precision is much
more sensitive to λ for long queries than for title queries. The web collection,
however, is an exception, where performance is very sensitive to smoothing
even for title queries. For title queries, the retrieval performance tends to be
optimized when λ is small (around 0.1), whereas for long queries, the optimal
point is generally higher, usually around 0.7. The difference in the optimal λ

value suggests that long queries need more smoothing, and less emphasis is
placed on the relative weighting of terms. The left end of the curve, where λ is
very close to zero, should be close to the performance achieved by treating the
query as a conjunctive Boolean query, while the right end should be close to

2The search is performed in an iterative way, such that each iteration is more focused than the
previous one. We stop searching when the improvement in average precision is less than 1%.
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Fig. 1. Performance of Jelinek–Mercer smoothing.

Fig. 2. Optimal λ range for Trec8T (left) and Trec8L (right) in Jelinek–Mercer smoothing. The
line shows the optimal value of λ and the bars are the optimal ranges, where the average precision
differs by no more than 1% from the optimal value.

the performance achieved by treating the query as a disjunctive query. Thus,
the shape of the curves in Figure 1 suggests that it is appropriate to interpret
a title query as a conjunctive Boolean query, while a long query is more close
to a disjunctive query, which makes sense intuitively.

The sensitivity pattern can be seen more clearly from the per-topic plot given
in Figure 2, which shows the range of λ values giving models that deviate from
the optimal average precision by no more than 1%.
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Fig. 3. Performance of Dirichlet smoothing.

5.2 Dirichlet Priors

When using the Dirichlet prior for smoothing, we see that the αd in the re-
trieval formula is document dependent. It is smaller for long documents, so it
can be interpreted as a length normalization component that penalizes long doc-
uments. The weight for a matched term is now log(1+ c(qi; d )/(µp(qi | C))). Note
that in the Jelinek–Mercer method, the term weight has a document length
normalization implicit in ps(qi | d ), but here the term weight is affected by
only the raw counts of a term, not the length of the document. After rewrit-
ing the weight as log(1 + |d |pml(qi | d )/(µp(qi | C))) we see that |d |/µ is playing
the same role as (1 − λ)/λ is playing in Jelinek–Mercer, but it differs in that it
is document-dependent. The relative weighting of terms is emphasized when
we use a smaller µ. Just as in Jelinek–Mercer, it can also be shown that when
µ approaches zero, the scoring formula is dominated by the count of matched
terms. As µ gets very large, however, it is more complicated than Jelinek–
Mercer due to the length normalization term, and it is not obvious what terms
would dominate the scoring formula.

The plots in Figure 3 show the average precision for different settings of the
prior sample size µ. The precision is again more sensitive to µ for long queries
than for title queries, especially when µ is small. Indeed, when µ is sufficiently
large, all long queries perform better than title queries, but when µ is very
small, it is the opposite. The optimal value of µ also tends to be larger for long
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Fig. 4. Performance of absolute discounting.

queries than for title queries, but the difference is not as large as in Jelinek–
Mercer. The optimal prior µ seems to vary from collection to collection, though
in most cases, it is around 2,000. The tail of the curves is generally flat.

5.3 Absolute Discounting

The term, weighting behavior of the absolute discounting method, is a little
more complicated. Obviously, here αd is also document sensitive. It is larger
for a document with a flatter distribution of words, that is, when the count
of unique terms is relatively large. Thus, it penalizes documents with a word
distribution highly concentrated on a small number of words. The weight of
a matched term is log(1 + (c(qi; d ) − δ)/(δ|d |u p(qi | C))). The influence of δ on
relative term weighting depends on |d |u and p(· | C), in the following way. If
|d |u p(w | C) > 1, a larger δ will make term weights flatter, but otherwise, it
will actually make the term weight more skewed according to the count of the
term in the document. Thus, a larger δ will amplify the weight difference for
rare words, but flatten the difference for common words, where the “rarity”
threshold is p(w | C) < 1/|d |u.

The plots in Figure 4 show the average precision for different settings of
the discount constant δ. Once again it is clear that the precision is much more
sensitive to δ for long queries than for title queries. Similar to Dirichlet prior
smoothing, but different from Jelinek–Mercer smoothing, the optimal value of
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δ does not seem to be much different for title queries and long queries. Indeed,
the optimal value of δ tends to be around 0.7. This is true not only for both title
queries and long queries, but also across all testing collections.

The behavior of each smoothing method indicates that, in general, the perfor-
mance of long verbose queries is much more sensitive to the choice of the smooth-
ing parameters than that of concise title queries. Inadequate smoothing hurts
the performance more severely in the case of long and verbose queries. This
suggests that smoothing plays a more important role for long verbose queries
than for concise title queries. One interesting observation is that the web col-
lection behaves quite differently than other databases for Jelinek–Mercer and
Dirichlet smoothing, but not for absolute discounting. In particular, the title
queries perform much better than the long queries on the web collection for
Dirichlet prior. Further analysis and evaluation are needed to understand this
observation.

6. INTERPOLATION VS. BACKOFF

The three methods that we have described and tested so far belong to the cate-
gory of interpolation-based methods, in which we discount the counts of the seen
words and the extra counts are shared by both the seen words and unseen words.
One problem of this approach is that a high count word may actually end up
with more than its actual count in the document, if it is frequent in the fallback
model. An alternative smoothing strategy is “backoff.” Here the main idea is to
trust the maximum likelihood estimate for high count words, and to discount
and redistribute mass only for the less common terms. As a result, it differs
from the interpolation strategy in that the extra counts are primarily used for
unseen words. The Katz smoothing method is a well-known backoff method
[Katz 1987]. The backoff strategy is very popular in speech recognition tasks.

Following Chen and Goodman [1998], we implemented a backoff version of
all the three interpolation-based methods, which is derived as follows. Recall
that in all three methods, ps(w) is written as the sum of two parts: (1) a dis-
counted maximum likelihood estimate, which we denote by pdml(w); (2) a col-
lection language model term, that is, αd p(w | C). If we use only the first term
for ps(w) and renormalize the probabilities, we will have a smoothing method
that follows the backoff strategy. It is not hard to show that if an interpolation-
based smoothing method is characterized by ps(w) = pdml(w) + αd p(w | C) and
pu(w) = αd p(w | C), then the backoff version is given by p

′
s(w) = pdml(w) and

p′
u(w) = αd p(w | C)

1−∑
w′∈V :c(w′ ;d )>0 p(w′ | C) . The form of the ranking formula and the smooth-

ing parameters remain the same. It is easy to see that the parameter αd in the
backoff version differs from that in the interpolation version by a document-
dependent term that further penalizes long documents. The weight of a matched
term due to backoff smoothing has a much wider range of values ((−∞, +∞))
than that for interpolation ((0, +∞)). Thus, analytically, the backoff version
tends to do term weighting and document length normalization more aggres-
sively than the corresponding interpolated version.

The backoff strategy and the interpolation strategy are compared for all three
methods using the FBIS database and topics 401–450 (i.e., fbis8T and fbis8L).
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Fig. 5. Interpolation versus backoff for Jelinek–Mercer (top), Dirichlet smoothing (middle), and
absolute discounting (bottom).

The results are shown in Figure 5. We find that the backoff performance is more
sensitive to the smoothing parameter than that of interpolation, especially in
Jelinek–Mercer and Dirichlet prior. The difference is clearly less significant in
the absolute discounting method, and this may be due to its lower upper bound
(|d |u/|d |) for the original αd , which restricts the aggressiveness in penalizing
long documents. In general, the backoff strategy gives worse performance than
the interpolation strategy, and only comes close to it when αd approaches zero,
which is expected, since analytically, we know that when αd approaches zero,
the difference between the two strategies will diminish.

7. COMPARISON OF METHODS

To compare the three smoothing methods, we select a best run (in terms of
noninterpolated average precision) for each (interpolation-based) method on
each testing collection and compare the non-interpolated average precision,
precision at 10 documents, and precision at 20 documents of the selected runs.
The results are shown in Table III and Table IV for titles and long queries
respectively.

For title queries, there seems to be a clear order among the three methods
in terms of all three precision measures: Dirichlet prior is better than abso-
lute discounting, which is better than Jelinek–Mercer. In fact, the Dirichlet
prior has the best average precision in all cases but one, and its overall av-
erage performance is significantly better than that of the other two methods
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Table III. Comparison of Smoothing Methods on Title Queries

Collection Method Parameter Avg. Prec. Prec@10 Prec@20

JM λ = 0.05 0.172 0.284 0.220
fbis7T Dir µ = 2, 000 0.197 0.282 0.238

Dis δ = 0.8 0.177 0.284 0.233

JM λ = 0.5 0.199 0.263 0.195
ft7T Dir µ = 4, 000 0.236 0.283 0.213

Dis δ = 0.8 0.215 0.271 0.196

JM λ = 0.4 0.179 0.238 0.205
la7T Dir µ = 2, 000 0.220* 0.294* 0.233

Dis δ = 0.8 0.194 0.268 0.216

JM λ = 0.01 0.306 0.344 0.282
fbis8T Dir µ = 500 0.334 0.367 0.292

Dis δ = 0.5 0.319 0.363 0.288

JM λ = 0.3 0.310 0.359 0.283
ft8T Dir µ = 800 0.324 0.367 0.297

Dis δ = 0.7 0.326 0.367 0.296

JM λ = 0.2 0.231 0.264 0.211
la8T Dir µ = 500 0.258 0.271 0.216

Dis δ = 0.8 0.238 0.282 0.224

JM λ = 0.3 0.167 0.366 0.315
trec7T Dir µ = 2, 000 0.186* 0.412 0.342

Dis δ = 0.7 0.172 0.382 0.333

JM λ = 0.2 0.239 0.438 0.378
trec8T Dir µ = 800 0.256 0.448 0.398

Dis δ = 0.6 0.245 0.466 0.406

JM λ = 0.01 0.243 0.348 0.293
web8T Dir µ = 3, 000 0.294* 0.448* 0.374*

Dis δ = 0.7 0.242 0.370 0.323

JM — 0.227 0.323 0.265
Average Dir — 0.256* 0.352* 0.289*

Dis — 0.236 0.339 0.279

The best performance is shown in bold font. The cases where the best performance is
significantly better than the next best according to the wilcoxin signed rank test at the
level of 0.05 are marked with a star (*). JM denotes Jelinek–Mercer, Dir denotes the
Dirichlet prior, and Dis denotes smoothing using absolute discounting.

according to the Wilcoxin test. It performed extremely well on the web col-
lection, significantly better than the other two; this good performance is rela-
tively insensitive to the choice of µ; many nonoptimal Dirichlet runs are also
significantly better than the optimal runs for Jelinek–Mercer and absolute
discounting.

For long queries, there is also a partial order. On average, Jelinek–Mercer is
better than Dirichlet and absolute discounting by all three precision measures,
but its average precision is almost identical to that of Dirichlet and only the
precision at 20 documents is significantly better than the other two methods
according to the Wilcoxin test. Both Jelinek–Mercer and Dirichlet clearly have
a better average precision than absolute discounting.

When comparing each method’s performance on different types of queries in
Table V, we see that the three methods all perform better on long queries than
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Table IV. Comparison of Smoothing Methods on Long Queries

Collection Method Parameter Avg. Prec. Prec@10 Prec@20

JM λ = 0.7 0.224 0.339 0.279
fbis7L Dir µ = 5, 000 0.232 0.313 0.249

Dis δ = 0.6 0.185 0.321 0.259

JM λ = 0.7 0.279 0.331 0.244
ft7L Dir µ = 2, 000 0.281 0.329 0.248

Dis δ = 0.8 0.249 0.317 0.236

JM λ = 0.7 0.264 0.350 0.286
la7L Dir µ = 2, 000 0.265 0.354 0.285

Dis δ = 0.7 0.251 0.340 0.279

JM λ = 0.5 0.341 0.349 0.283
fbis8L Dir µ = 2, 000 0.347 0.349 0.290

Dis δ = 0.7 0.343 0.356 0.274

JM λ = 0.8 0.375 0.427 0.320
ft8L Dir µ = 2, 000 0.347 0.380 0.297

Dis δ = 0.8 0.351 0.398 0.309

JM λ = 0.7 0.290* 0.296 0.238
la8L Dir µ = 500 0.277 0.282 0.231

Dis δ = 0.6 0.267 0.287 0.222

JM λ = 0.8 0.222 0.476 0.401
trec7L Dir µ = 3, 000 0.224 0.456 0.383

Dis δ = 0.7 0.204 0.460 0.396

JM λ = 0.8 0.265 0.504 0.434
trec8L Dir µ = 2, 000 0.260 0.484 0.4

Dis δ = 0.8 0.248 0.518 0.428

JM λ = 0.5 0.259 0.422 0.348
web8L Dir µ = 10, 000 0.275 0.410 0.343

Dis δ = 0.6 0.253 0.414 0.333

JM — 0.280 0.388 0.315*
Average Dir — 0.279 0.373 0.303

Dis — 0.261 0.379 0.304

The Best Performance is shown in bold font. The cases where the best performance is
significantly better than the next best according to the Wilcoxin signed rank test at the
level of 0.05 are marked with a star (*). JM denotes Jelinek–Mercer, Dir denotes the
dirichlet prior, and Dis denotes smoothing using absolute discounting.

Table V. Comparing Long Queries with Short Queries

Method Query Avg. Prec. Prec@10 Prec@20
Title 0.227 0.323 0.265

Jelnek–Mercer Long 0.280 0.388 0.315
improve *23.3% *20.1% *18.9%
Title 0.256 0.352 0.289

Dirichlet Long 0.279 0.373 0.303
improve *9.0% 6.0% 4.8%
Title 0.236 0.339 0.279

Absolute Disc. Long 0.261 0.379 0.304
Improve *10.6% 11.8% 9.0%

Star (*) Indicates the improvement is statistically significant in accordance
with Wilcoxin signed rank test at the level of 0.05.
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on title queries (except that Dirichlet prior performs worse on long queries
than title queries on the web collection). The improvement in average preci-
sion is statistically significant for all three methods according to the Wilcoxin
test. But the increase of performance is most significant for Jelinek–Mercer,
which is the worst for title queries, but the best for long queries. It appears
that Jelinek–Mercer is much more effective when queries are long and more
verbose.

Since the Trec7&8 database differs from the combined set of FT, FBIS,
LA by only the Federal Register database, we can also compare the perfor-
mance of a method on the three smaller databases with that on the large
one. We find that the noninterpolated average precision on the large database
is generally much worse than that on the smaller ones, and is often simi-
lar to the worst one among all the three small databases. However, the pre-
cision at 10 (or 20) documents on large collections is all significantly bet-
ter than that on small collections. For both title queries and long queries,
the relative performance of each method tends to remain the same when
we merge the databases. Interestingly, the optimal setting for the smooth-
ing parameters seems to stay within a similar range when databases are
merged.

The strong correlation between the effect of smoothing and the type of queries
is somehow unexpected. If the purpose of smoothing is only to improve the ac-
curacy in estimating a unigram language model based on a document, then,
the effect of smoothing should be more affected by the characteristics of doc-
uments and the collection, and should be relatively insensitive to the type of
queries. But the results above suggest that this is not the case. Indeed, the effect
of smoothing clearly interacts with some of the query factors. To understand
whether it is the length or the verbosity of the long queries that is responsi-
ble for such interactions, we design experiments to further examine these two
query factors (i.e., the length and verbosity). The details are reported in the
next section.

8. INFLUENCE OF QUERY LENGTH AND VERBOSITY ON SMOOTHING

In this section, we present experimental results that further clarify which fac-
tor is responsible for the high sensitivity observed on long queries. We design
experiments to examine two query factors—length and “verbosity.” We consider
four different types of queries: short keyword, long keyword, short verbose, and
long verbose queries. As will be shown, the high sensitivity is indeed caused by
the presence of common words in the query.

8.1 Setup

The four types of queries used in our experiments are generated from TREC
topics 1-150. These 150 topics are special because, unlike other TREC topics,
they all have a “concept” field, which contains a list of keywords related to the
topic. These keywords serve well as the “long keyword” version of our queries.
Figure 6 shows an example of such a topic (topic 52).

ACM Transactions on Information Systems, Vol. 22, No. 2, April 2004.



196 • C. Zhai and J. Lafferty

Fig. 6. Example topic, number 52. The keywords are used as the “long keyword” version of our
queries.

We used all of the 150 topics and generated the four versions of queries in
the following way:

(1) short keyword: Using only the title of the topic description (usually a noun
phrase)3

(2) short verbose: Using only the description field (usually one sentence).
(3) long keyword: Using the concept field (about 28 keywords on average).
(4) long verbose: Using the title, description and the narrative field (more than

50 words on average).

The relevance judgments available for these 150 topics are mostly on the
documents in TREC disk 1 and disk 2. In order to observe any possible difference
in smoothing caused by the types of documents, we partition the documents
in disks 1 and 2 and use the three largest subsets of documents, accounting
for a majority of the relevant documents for our queries. The three databases
are AP88-89, WSJ87-92, and ZIFF1-2, each about 400MB–500MB in size. The
queries without relevance judgments for a particular database were ignored for
all of the experiments on that database. Four queries do not have judgments on
AP88-89, and 49 queries do not have judgments on ZIFF1-2. Preprocessing of
the documents is minimized; only a Porter stemmer is used, and no stop words
are removed. Combining the four types of queries with the three databases
gives us a total of 12 different testing collections.

3Occasionally, a few function words were manually excluded, in order to make the queries purely
keyword-based.
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Fig. 7. Sensitivity of Precision for Jelinek–Mercer smoothing (left) and Dirichlet prior smoothing
(right) on AP88-89 (top), WSJ87-92 (middle), and ZF1-2 (bottom).

8.2 Results

To better understand the interaction between different query factors and
smoothing, we studied the sensitivity of retrieval performance to smoothing on
each of the four different types of queries. For both Jelinek–Mercer and Dirich-
let smoothing, on each of our 12 testing collections we vary the value of the
smoothing parameter and record the retrieval performance at each parame-
ter value. The results are plotted in Figure 7. For each query type, we plot
how the average precision varies according to different values of the smoothing
parameter.
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From these figures, we easily see that the two types of keyword queries be-
have similarly, as do the two types of verbose queries. The retrieval performance
is generally much less sensitive to smoothing in the case of the keyword queries
than for the verbose queries, whether long or short. The short verbose queries
are clearly more sensitive than the long keyword queries. Therefore, the sen-
sitivity is much more correlated with the verbosity of the query than with the
length of the query; In all cases, insufficient smoothing is much more harmful
for verbose queries than for keyword queries. This suggests that smoothing is
responsible for “explaining” the common words in a query.

We also see a consistent order of performance among the four types of queries.
As expected, long keyword queries are the best and short verbose queries are
the worst. Long verbose queries are worse than long keyword queries, but better
than short keyword queries, which are better than the short verbose queries.
This appears to suggest that queries with only (presumably good) keywords
tend to perform better than more verbose queries. Also, longer queries are
generally better than short queries.

9. TWO-STAGE SMOOTHING

The above empirical results suggest that there are two different reasons for
smoothing. The first is to address the small sample problem and to explain the
unobserved words in a document, and the second is to explain the common/noisy
words in a query. In other words, smoothing actually plays two different roles in
the query likelihood retrieval method. One role is to improve the accuracy of the
estimated documents language model, and can be referred to as the estimation
role. The other is to “explain” the common and non-informative words in a query,
and can be referred to as the role of query modeling. Indeed, this second role is
explicitly implemented with a two-state HMM in Miller et al. [1999]. This role is
also well supported by the connection of smoothing and IDF weighting derived
in Section 2. Intuitively, more smoothing would decrease the “discrimination
power” of common words in the query, because all documents will rely more
on the collection language model to generate the common words. The need for
query modeling may also explain why the backoff smoothing methods have not
worked as well as the corresponding interpolation-based methods—it is because
they do not allow for query modeling.

For any particular query, the observed effect of smoothing is likely a mixed
effect of both roles of smoothing. However, for a concise keyword query, the ef-
fect can be expected to be much more dominated by the estimation role, since
such a query has few or no non-informative common words. On the other hand,
for a verbose query, the role of query modeling will have more influence, for such
a query generally has a high ratio of non-informative common words. Thus, the
results reported in Section 7 can be interpreted in the following way: The fact
that the Dirichlet prior method performs the best on concise title queries sug-
gests that it is good for the estimation role, and the fact that Jelinek–Mercer
performs the worst for title queries, but the best for long verbose queries sug-
gests that Jelinek–Mercer is good for the role of query modeling. Intuitively
this also makes sense, as Dirichlet prior adapts to the length of documents
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naturally, which is desirable for the estimation role, while in Jelinek–Mercer,
we set a fixed smoothing parameter across all documents, which is necessary
for query modeling.

This analysis suggests the following two-stage smoothing strategy. At the
first stage, a document language model is smoothed using a Dirichlet prior, and
in the second stage it is further smoothed using Jelinek–Mercer. The combined
smoothing function is given by

pλ,µ(w | d ) = (1 − λ)
c(w; d ) + µp(w | C)

|d | + µ
+ λp(w |U) , (14)

where p(· |U) is the user’s query background language model, λ is the Jelinek–
Mercer smoothing parameter, and µ is the Dirichlet prior parameter. The com-
bination of these smoothing procedures is aimed at addressing the dual role of
smoothing.

The query background model p(· |U) is, in general, different from the collec-
tion language model p(· | C). With insufficient data to estimate p(· |U), however,
we can assume that p(· | C) would be a reasonable approximation of p(· |U).
In this form, the two-stage smoothing method is essentially a combination of
Dirichlet prior smoothing with Jelinek–Mercer smoothing. Clearly when λ = 0
the model reduces to Dirichlet prior smoothing, whereas when µ = 0, it is
Jelinek–Mercer smoothing. Since the combined smoothing formula still follows
the general smoothing scheme discussed in Section 3, it can be implemented
very efficiently.

9.1 Empirical Justification

In two-stage smoothing we now have two, rather than one, parameter to worry
about; however, the two parameters λ and µ are now more meaningful. λ is
intended to be a query-related parameter, and should be larger if the query is
more verbose. It can be roughly interpreted as modeling the expected “noise”
in the query. µ is a document related parameter, and controls the amount of
probability mass assigned to unseen words. Given a document collection, the
optimal value of µ is expected to be relatively stable. We now present empirical
results which demonstrate this to be the case.

Figure 8 shows how two-stage smoothing reveals a more regular sensitivity
pattern than the single-stage smoothing methods studied earlier in this paper.
The three figures show how the precision varies when we change the prior value
in Dirichlet smoothing on three different testing collections respectively (Trec7
ad hoc task, Trec8 ad hoc task, and Trec8 web task).4 The three lines in each
figure correspond to (1) Dirichlet smoothing with title queries; (2) Dirichlet
smoothing with long queries; (3) Two-stage smoothing (Dirichlet + Jelinek–
Mercer, λ = 0.7) with long queries.5 The first two are thus based on a single
smoothing method (Dirichlet prior), while the third uses two-stage smoothing
with a near optimal λ.

4These are exactly the same as trec7T, trec7L, trec8T, trec8L, web8T, and web8L described in
Section 4, but are labelled differently here in order to clarify the effect of two-stage smoothing.
50.7 is a near optimal value of λ when Jelinek–Mercer method is applied alone.
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Fig. 8. Two-stage smoothing reveals a more consistent sensitivity pattern than single-stage
Dirichlet smoothing for both title queries and long queries. Each figure is for a different collec-
tion: Trec7 (top), Trec8 (middle), and web testing collection (bottom).

In each of the figure, we see that

(1) If Dirichlet smoothing is used alone, the sensitivity pattern for long queries
is very different from that for title queries; the optimal setting of the prior
is clearly different for title queries than for long queries.

(2) In two-stage smoothing, with the help of Jelinek–Mercer to play the second
role of smoothing, the sensitivity pattern of Dirichlet smoothing is much
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Table VI. Comparison of the Average Precision between Near Optimal Two-Stage
Smoothing and the Best One-Stage Smoothing

Collection Best JM Best JM Two-Stage
TREC7L 0.222 λ = 0.8 0.224 µ = 3, 000 0.229 λ = 0.7, µ = 800
TREC8L 0.265 λ = 0.8 0.260 µ = 2, 000 0.268 λ = 0.7, µ = 800
WEB8L 0.259 λ = 0.5 0.275 µ = 10, 000 0.292 λ = 0.7, µ = 3, 000
TREC7T 0.167 λ = 0.3 0.186 µ = 2, 000 0.184 λ = 0, µ = 800
TREC8T 0.239 λ = 0.2 0.256 µ = 800 0.256 λ = 0, µ = 800
WEB8T 0.243 λ = 0.01 0.294 µ = 3, 000 0.294 λ = 0, µ = 3, 000

Setting λ = 0.7 for long queries, and λ = 0 for title queries, and setting µ = 800 for Trec7/Trec8
database, and µ = 3, 000 for the web database, the two-stage smoothing performs better than or as
well as the best single-stage smoothing method.

more similar for title queries and long queries, that is, it becomes much
less sensitive to the type/length of queries. By factoring out the second role
of smoothing, we are able to see a more consistent and stable behavior of
Dirichlet smoothing, which is playing the first role. Indeed, we can compare
the Trec7 figure (top) and the Trec8 (middle), which involve different topic
sets but the same document collection. We can see that the optimal value
for the prior parameter on both figures is generally between 500 and 2000,
despite the difference in queries.

(3) Given a topic set, the same λ value can stabilize the sensitivity pattern of
Dirichlet prior smoothing on different collections. The Trec8 figure (middle)
and web figure (bottom) involve the same topic set but different collections.
In comparing them, note that the same λ value (0.7) can cause Dirichlet to
behave similarly for both title queries and long queries on each of the two
collections.

(4) The optimal value of the prior parameter in Dirichlet is generally sensitive
to the collection. This can be seen by comparing the Trec8 figure (middle)
with the web figure (bottom) and noticing that the position of optimal prior
is different.

It should also be noted in these figures that with the help from Jelinek–Mercer
in two-stage smoothing, Dirichlet smoothing can achieve a higher precision on
long queries than is attainable with single-stage smoothing alone. Of course,
this may be because Jelinek–Mercer is just a better method for long queries,
but the two stage results are often also better than the best result of using
Jelinek–Mercer alone (see Table VI).

It is worth mentioning that on the web data (Figure 8, bottom), the title
queries perform much better than the long queries with Dirichlet prior smooth-
ing alone. But with two-stage smoothing, the long queries perform similarly to
the title queries, though still slightly worse. This is in contrast to the clear im-
provement of long queries over title queries in the Trec8 collection (Figure 8,
middle). The topic set is exactly the same for both figures, so this can only
be explained by the difference in the collections. One possibility is that the
extra words introduced in the long queries are not so useful for retrieval on
web database as on the Trec8 database. For example, it may be that the ex-
tra words are more ambiguous on the web database, but are used with only the
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“right” sense on the Trec8 database. More analysis is needed to fully understand
this.

9.2 Theoretical Derivation

We now show that the two-stage smoothing method can also be formally derived
using the risk minimization retrieval framework proposed in Lafferty and Zhai
[2001]. We first derive a family of general two-stage language models, and then
show that our two-stage smoothing method is a special case of using specific
generative models for the query and documents. The formal derivation also
naturally suggests the parameter estimation methods to be presented in the
next section.

9.2.1 Two-Stage Language Models. The original language modeling ap-
proach as proposed in Ponte and Croft [1998] involves a two-step scoring proce-
dure: (1) Estimate a document language model for each document; (2) Compute
the query likelihood using the estimated document language model (directly).
The two-stage language modeling approach is a generalization of this two-step
procedure, in which a query language model is introduced so that the query
likelihood is computed using a query model that is based on the estimated doc-
ument model, instead of using the estimated document model directly. The use
of an explicit and separate query model makes it possible to factor out any in-
fluence of queries on the smoothing parameters for document language models.

We now derive the family of two-stage language models for information re-
trieval using the risk minimization framework, which is a general probabilistic
retrieval framework based on Bayesian decision theory. The framework unifies
several existing retrieval models within one general probabilistic framework,
and facilitates the development of new principled approaches to text retrieval
[Lafferty and Zhai 2001].

In this framework, queries and documents are modeled using statistical lan-
guage models, user preferences are modeled through loss functions, and re-
trieval is cast as a risk minimization problem. Operationally, documents are
ranked based on the following risk function:

R (d ; q) =
∑

R∈{0,1}

∫
�Q

∫
�D

L(θQ , θD, R) p(θQ | q, U) p(θD | d , S) p(R | θQ , θD) dθDdθQ

where d denotes a document; q denotes a query; U is a user variable; S is a
document source variable; θQ and θD are query language model and document
language model respectively; R is a binary relevance variable; and L(θQ , θD, R)
is a loss function. The risk associated with retrieving document d in response
to query q is seen to be the expected loss given the query, document, and infor-
mation about the user and document source.

The loss function encodes retrieval preferences and, in general, may depend
on all of θQ , θD, and R. In Lafferty and Zhai [2001], it has been shown that
different specific retrieval models can be derived using different choices of loss
functions. Here we derive the two-stage language modeling approach using the
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following loss function, indexed by a small constant ε,

Lε(θQ , θD, R) =
{

0 if �(θQ , θD) ≤ ε

c otherwise,

where � : �Q × �D → R is a model distance function, and c is a constant
positive cost. Thus, the loss is zero when the query model and the document
model are close to each other, and is c otherwise. This loss function implicitly
depends on the relevance variable R and encodes a user’s desire for retrieving
documents whose models are close to the query model.

Using this loss function, we obtain the following risk:

R (d ; q) = c −
∫

�D

∫
θQ ∈Sε (θD )

p(θQ | q, U) p(θD | d , S) dθQ dθD,

where Sε(θD) is the sphere of radius ε centered at θD in the parameter space.
Now, assuming that p(θD | d , S) is concentrated on an estimated value θ̂ D,

we can approximate the value of the integral over �D by the integrand’s value
at θ̂ D. Note that the constant c can be ignored for the purpose of ranking. Thus,
using A

rank≈ B to mean that A and B have the same effect for ranking, we have
that

R (d ; q)
rank≈ −

∫
θQ ∈Sε (θ̂ D)

p(θQ | q, U) dθQ

When θQ and θD belong to the same parameter space (i.e., �Q = �D) and ε is
very small, the value of the integral can be approximated by the value of the
function at θ̂ D times a constant (the volume of Sε(θ̂ D)), and the constant can
again be ignored for the purpose of ranking. That is,

R (d ; q)
rank≈ −p(θ̂ D | q, U).

Therefore, using this risk we will be actually ranking documents according to
p(θ̂ D | q, U), that is, the posterior probability that the user used the estimated
document model as the query model. Applying Bayes’ formula, we can rewrite
this as

p(θ̂ D | q, U) ∝ p(q | θ̂ D, U)p(θ̂ D |U). (15)

Equation 15 is our basic two-stage language model retrieval formula. Similar
to the model discussed in Berger and Lafferty [1999], this formula has the
following interpretation: p(q | θ̂ D, U) captures how well the estimated document
model θ̂ D explains the query, whereas p(θ̂ D |U) encodes our prior belief that the
user would use θ̂ D as the query model. While this prior could be exploited to
model different document sources or other document characteristics, in this
paper we assume a uniform prior.

The generic two-stage language model can be refined by specifying a concrete
model p(d | θD, S) for generating documents and a concrete model p(q | θQ , U) for
generating queries; different specifications lead to different retrieval formulas.
If the query generation model is the simplest unigram language model, we have
the scoring procedure of the original language modeling approach proposed in
Ponte and Croft [1998]; that is, we first estimate a document language model
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and then compute the query likelihood using the estimated model. Next, we
present the generative models that lead to the two-stage smoothing method
described at the beginning of this section.

9.2.2 The Two-Stage Smoothing Method. Let d = d1d2 · · · dm denote a doc-
ument, q = q1q2 · · · qn denote a query, and V = {w1, . . . , w|V |} denote the words
in the vocabulary. We consider the case where both θQ and θD are parameters
of unigram language models, that is, multinomial distributions over words in
V .

The simplest generative model of a document is just the unigram language
model θD, a multinomial. That is, a document would be generated by sampling
words independently according to p(· | θD), or

p(d | θD, S) =
m∏

i=1

p(di | θD).

Each document is assumed to be generated from a potentially different model as
assumed in the general risk minimization framework. Given a particular docu-
ment d , we want to estimate θD. We use a Dirichlet prior on θD with parameters
α = (α1, α2, . . . , α|V |), given by

Dir (θ | α) = �
( ∑|V |

i=1 αi
)

∏|V |
i=1 �(αi)

|V |∏
i=1

θ
αi−1
i . (16)

The parameters αi are chosen to be αi = µ p(wi |S) where µ is a parameter and
p(· |S) is the “collection language model,” which can be estimated based on a
set of documents from a source S. The posterior distribution of θD is given by

p(θD | d , S) ∝
∏
w∈V

p(w | θD)c(w,d )+µp(w |S)−1

and so is also Dirichlet, with parameters αi = c(wi, d ) + µp(wi |S). Using the
fact that the Dirichlet mean is α j /

∑
k αk , we have that

pµ(w | θ̂ D) =
∫

θD

p(w | θD)p(θD | d , S)dθD

= c(w, d ) + µp(w |S)
|d | + µ

,

where |d | = ∑
w∈V c(w, d ) is the length of d . This is the Dirichlet prior smooth-

ing method described in Section 3.
We now consider the query generation model. The simplest model is again

the unigram language model θQ , which will result in a retrieval model with
the Dirichlet prior as the single smoothing method. However, as observed in
Section 8, such a model will not be able to explain the interactions between
smoothing and the type of queries. In order to capture the common and nondis-
criminative words in a query, we assume that a query is generated by sampling
words from a two-component mixture of multinomials, with one component
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being θQ and the other some query background language model p(· |U). That is,

p(q | θQ , λ, U) =
n∏

i=1

((1 − λ)p(qi | θQ ) + λp(qi |U)),

where λ is a parameter, roughly indicating the amount of “noise” in q.
Combining our estimate of θD with this query model, we have the following

retrieval scoring formula for document d and query q.

p(q | θ̂ D, λ, U) =
n∏

i=1

((1 − λ)p(qi | θ̂ D) + λp(qi |U))

=
n∏

i=1

(
(1 − λ)

c(qi, d ) + µp(qi |S)
|d | + µ

+ λp(qi |U)
)

.

This is precisely the two-stage smoothing formula, in which the document lan-
guage model is effectively smoothed in two steps. First, it is smoothed with a
Dirichlet prior, and second, it is interpolated with a query background model.

10. PARAMETER ESTIMATION

In this section, we present methods for estimating the two parameters µ and λ

involved in the two-stage smoothing method.
It is well-known that the optimal settings of retrieval parameters generally

depend on both the document collection and the query. For example, specialized
term weighting for short queries was studied in Kwok and Chan [1998]. Salton
and Buckley [1988] studied many different term weighting methods used in
the vector-space retrieval model; their recommended methods strongly depend
on the type of the query and the characteristics of the document collection. It
has been a great challenge to find the optimal settings of retrieval parameters
automatically and adaptively accordingly to the characteristics of the collection
and queries, and empirical parameter tuning seems to be inevitable in order
to achieve good retrieval performance. This is evident in the large number of
parameter-tuning experiments reported in virtually every paper published in
the TREC proceedings [Voorhees and Harman 2001].

The need for empirical parameter tuning is due in part from the fact that, in
traditional retrieval models, such as the vector-space model [Salton et al. 1975]
and the BM25 retrieval model [Robertson et al. 1995], the retrieval parameters
have almost always been introduced heuristically. The lack of a direct model-
ing of queries and documents makes it hard for these models to incorporate,
in a principled way, parameters that adequately address special characteris-
tics of queries and documents. For example, the vector-space model assumes
that a query and a document are both represented by a term vector. However,
the mapping from a query or a document to such a vector can be somehow
arbitrary. Thus, because the model “sees” a document through its vector rep-
resentation, there is no principled way to model the length of a document. As
a result, heuristic parameters must be used (see, e.g., the pivot length nor-
malization method [Singhal et al. 1996]). Similarly, in the BM25 retrieval for-
mula, there is no direct modeling of queries, making it necessary to introduce
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heuristic parameters to incorporate query term frequencies [Robertson et al.
1995].

In order to be able to set parameters automatically, it is necessary to model
queries and documents directly, and this is where the risk minimization re-
trieval framework has a significant advantage over these traditional models,
since it has the capability of modeling both queries and documents directly
through statistical language models. Although a query and a document are
similar in the sense that they are both text, they do have important differences.
For example, queries are much shorter and often contain just a few keywords.
Thus, from the viewpoint of language modeling, a query and a document require
different language models. Practically, separating a query model from a docu-
ment model has the important advantage of being able to introduce different
retrieval parameters for queries and documents when appropriate. Indeed, the
two-stage smoothing strategy explicitly captures the different influences of the
query and document collection on the optimal settings of smoothing parame-
ters, making it possible to set the parameters automatically through statistical
estimation methods. Next, we propose a leave-one-out method for estimating
the first-stage Dirichlet parameter and make use of a mixture model for esti-
mating the second-stage interpolation parameter.

10.1 Estimating µ

The purpose of the Dirichlet prior smoothing at the first stage is to address the
estimation bias due to the fact that a document is an extremely small amount
of data with which to estimate a unigram language model. More specifically,
it is to discount the maximum likelihood estimate appropriately and assign
nonzero probabilities to words not observed in a document; this is the usual
role of language model smoothing. A useful objective function for estimating
smoothing parameters is the “leave-one-out” likelihood, that is, the sum of the
log-likelihoods of each word in the observed data computed in terms of a model
constructed based on the data with the target word excluded (“left out”). This cri-
terion is essentially based on cross-validation, and has been used to derive sev-
eral well-known smoothing methods including the Good–Turing method [Ney
et al. 1995].

Formally, let C = {d1, d2, . . . , dN } be the collection of documents. Using the
Dirichlet smoothing formula, the leave-one-out log-likelihood can be written as

�−1(µ | C) =
N∑

i=1

∑
w∈V

c(w, di) log
(

c(w, di) − 1 + µp(w|C)
|di| − 1 + µ

)
.

Thus, our estimate of µ is

µ̂ = arg max
µ

�−1(µ|C).

which can be easily computed using Newton’s method. The update formula is

µ(k+1) = µ(k) − g
(
µ(k)

)
g ′(µ(k)

)
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Table VII. Estimated Values of µ Along with Database Characteristics

Collection avg. doc length max. doc length vocab. size µ̂

AP88-89 446 2678 254872 640.643
WSJ87-92 435 8980 260259 792.001
ZF1-2 455 53753 447066 719.637

where the first and second derivatives of �−1 are given by

g (µ) = � ′
−1(µ) =

N∑
i=1

∑
w∈V

c(w, di) ((|di| − 1)p(w | C) − c(w, di) + 1)
(|di| − 1 + µ)(c(w, di) − 1 + µp(w | C))

and

g ′(µ) = � ′′
−1(µ) = −

N∑
i=1

∑
w∈V

c(w, di)((|di| − 1)p(w | C) − c(w, di) + 1)2

(|di| − 1 + µ)2(c(w, di) − 1 + µp(w | C))2
.

Since g ′ ≤ 0, as long as g ′ �= 0, the solution will be a global maximum. In our
experiments, starting from value 1.0 the algorithm always converges.

The estimated values of µ for three databases are shown in Table VII. There
is no clear correlation between the database characteristics shown in the table
and the estimated value of µ.

10.2 Estimating λ

With the query model hidden, the query likelihood is

p(q | λ, U) =
∫

�Q

n∏
i=1

((1 − λ)p(qi | θQ ) + λp(qi |U))p(θQ |U) dθQ .

In order to estimate λ, we approximate the query model space by the set of
all N estimated document language models in our collection. That is, we will
approximate the integral with a sum over all the possible document language
models estimated on the collection, or

p(q | λ, U) =
N∑

i=1

πi

n∏
j=1

((1 − λ)p(qj | θ̂di ) + λp(qj |U)),

where πi = p(θ̂di |U), and p(· | θ̂di ) is the smoothed unigram language model
estimated based on document di using the Dirichlet prior approach.

Thus, we assume that the query is generated from a mixture of N document
models with unknown mixing weights {πi}N

i=1. With this setup, the parameters
λ and {πi}N

i=1 can be estimated using the EM algorithm. The update formulas
are

π
(k+1)
i = π

(k)
i

∏n
j=1

((
1 − λ(k)

)
p(qj | θ̂di ) + λ(k) p(qj |U)

)
∑N

i′=1 π
(k)
i′

∏n
j=1

((
1 − λ(k)

)
p(qj | θ̂di′ ) + λ(k) p(qj |U)

)
and

λ(k+1) = 1
n

N∑
i=1

π
(k+1)
i

n∑
j=1

λ(k)p(qj |U)(
1 − λ(k)

)
p(qj | θ̂di ) + λ(k)p(qj |U)

.
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Note that leaving {πi}N
i=1 free is important, because what we really want is not

to maximize the likelihood of generating the query from every document in the
collection. Instead, we want to find a λ that can maximize the likelihood of the
query given relevant documents. With {πi}N

i=1 free to estimate, we would indeed
allocate higher weights to documents that predict the query well in our likeli-
hood function; presumably, these documents are also more likely to be relevant.
Unfortunately, if we intend to find the exact maximum likelihood estimate of
all {πi}N

i=1, we will end up assigning the entire probability mass to a single doc-
ument. This is because for any given λ, there always is a smoothed document
model that assigns the highest likelihood for the query, thus setting πi = 1 for
this document gives a higher overall likelihood than any other assignment to
πi (V. Lavrenko, 2002, Personal communication). Clearly, this is not desirable
and empirically it leads to non-optimal performance. To address this problem,
we initialize {πi}N

i=1 with a uniform distribution and λ with 0.5, and allow use
early stopping in the EM algorithm, allowing a maximum of 10 iterations in
our experiments. This strategy allows us to obtain a relatively smooth estimate
of {πi}N

i=1 and works well empirically. The performance is not very sensitive to
the exact number of EM iterations, as long as it is not too large (e.g., smaller
than 20); it also appears to be “safer” to use a smaller number of iterations, in
the sense that the performance will not be too much different from the optimal
performance.

11. EFFECTIVENESS OF THE PARAMETER ESTIMATION METHODS

To evaluate the two parameter estimation methods for the two-stage smoothing
method, we tested it on the same 12 testing collections as we used for studying
the query factors (see Section 8.2). These collections represent a good diver-
sity in the types of queries and documents. However, they are all homogeneous
databases and are relatively small. In order to further test the robustness of
the two-stage smoothing method, we also tested it on three other much big-
ger and more heterogeneous TREC collections. These are the official ad hoc
retrieval collections from TREC-7, TREC-8, and the TREC-8 small web track,
and are the same as what we use in the experiments described in Section 4.6

Since these topics do not have a concept field, we have only three types of
queries: short-keyword, short-verbose, and long-verbose. Again, we perform
minimum preprocessing—only a Porter stemmer was used, and no stop words
were removed.

For each testing collection, we compare the retrieval performance of the esti-
mated two-stage smoothing parameters with the best results achievable using
a single smoothing method. The best results of a single smoothing method are
obtained through an exhaustive search on its parameter space, so are the ideal
performance of the smoothing method. In all our experiments, we used the
collection language model to approximate the query background model.

The results are shown in Table VIII and Table IX for the small collections
and large collections, respectively. The four types of queries are abbreviated
with the two initial letters (e.g., SK for Short-Keyword). The standard TREC

6We label these collections differently here to make the labelling consistent with that in Table VIII.
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Table VIII. Comparison of the Estimated Two-Stage Smoothing with the Best Single Stage
Smoothing Methods on Small Collections

Collection Query Method Avg. Prec. (Median) InitPr Pr@10 Pr@20

Best JM 0.203 (0.194) 0.573 0.310 0.283
SK Best Dir 0.230 (0.224) 0.623 0.356 0.332

Two-Stage 0.222* 0.611 0.358 0.317
Best JM 0.368 (0.362) 0.767 0.509 0.469

LK Best Dir 0.376 (0.368) 0.755 0.506 0.475
AP88-89 Two-Stage 0.374 0.754 0.505 0.480

Best JM 0.188 (0.158) 0.569 0.309 0.272
SV Best Dir 0.209 (0.195) 0.609 0.338 0.304

Two-Stage 0.204 0.598 0.339 0.305
Best JM 0.288 (0.263) 0.711 0.430 0.391

LV Best Dir 0.298 (0.285) 0.704 0.453 0.403
Two-Stage 0.292 0.689 0.444 0.400

Best JM 0.194 (0.188) 0.629 0.364 0.330
SK Best Dir 0.223 (0.218) 0.660 0.412 0.376

Two-Stage 0.218* 0.662 0.409 0.366
Best JM 0.348 (0.341) 0.814 0.575 0.524

LK Best Dir 0.353 (0.343) 0.834 0.562 0.507
WSJ87-92 Two-Stage 0.358 0.850* 0.572 0.523

Best JM 0.172 (0.158) 0.615 0.346 0.314
SV Best Dir 0.196 (0.188) 0.638 0.389 0.333

Two-Stage 0.199 0.660 0.391 0.344
Best JM 0.277 (0.252) 0.768 0.481 0.452

LV Best Dir 0.282 (0.270) 0.750 0.480 0.442
Two-Stage 0.288* 0.762 0.497 0.449

Best JM 0.179 (0.170) 0.455 0.220 0.193
SK Best Dir 0.215 (0.210) 0.514 0.265 0.226

Two-Stage 0.200 0.490 0.256 0.227
Best JM 0.306 (0.290) 0.675 0.345 0.300

LK Best Dir 0.326 (0.316) 0.681 0.376 0.322
ZF1-2 Two-Stage 0.322 0.696 0.368 0.322

Best JM 0.156 (0.139) 0.450 0.208 0.174
SV Best Dir 0.185 (0.170) 0.456 0.225 0.185

Two-Stage 0.181 0.487 0.246* 0.203
Best JM 0.267 (0.242) 0.593 0.300 0.258

LV Best Dir 0.279 (0.273) 0.606 0.329 0.272
Two-Stage 0.279* 0.618 0.334 0.278

The best number for each measure is shown in boldface. An asterisk (*) indicates that the difference be-
tween the two-stage smoothing performance and the best one-stage smoothing performance is statistically
significant according to the Wilcoxin signed rank test at the level of 0.05.

evaluation procedure for ad hoc retrieval is followed, and we have considered
four performance measures—non-interpolated average precision, initial preci-
sion (i.e., precision at 0.0 recall), and precision at 10 and 20 documents. In all
the results, we see that the performance of two-stage smoothing with the es-
timated parameter values is consistently very close to or better than the best
performance of a single method by all three measures. Only in a few cases, is
the difference statistically significant (indicated with an asterisk).

To quantify the sensitivity of the retrieval performance to the smoothing
parameter for single smoothing methods, we also show (in parentheses) the
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Table IX. Comparison of the Estimated Two-Stage Smoothing with the Best Single Stage
Smoothing Methods on Large Collections

Collection Query Method Avg. Prec. (Median) InitPr Pr@10 Pr@20

Best JM 0.167 (0.165) 0.632 0.366 0.315
Trec7-SK Best Dir 0.186 (0.182) 0.688 0.412 0.342

Two-Stage 0.182 0.673 0.420 0.357
Best JM 0.173 (0.138) 0.646 0.392 0.342

Trec7-SV Best Dir 0.182 (0.168) 0.656 0.416 0.340
Two-Stage 0.181 0.655 0.416 0.348
Best JM 0.222 (0.195) 0.723 0.476 0.401

Trec7-LV Best Dir 0.224 (0.212) 0.763 0.456 0.383
Disk4&5 Two-Stage 0.230 0.760 0.466 0.412
(-CR) Best JM 0.239 (0.237) 0.621 0.438 0.378

Trec8-SK Best Dir 0.256 (0.244) 0.717 0.448 0.398
Two-Stage 0.257 0.719 0.448 0.405
Best JM 0.231 (0.192) 0.687 0.416 0.357

Trec8-SV Best Dir 0.228 (0.222) 0.670 0.400 0.337
Two-Stage 0.231 0.719 0.440 0.354
Best JM 0.265 (0.234) 0.789 0.504 0.434

Trec8-LV Best Dir 0.260 (0.252) 0.753 0.484 0.400
Two-Stage 0.268 0.787 0.478 0.400

Best JM 0.243 (0.212) 0.607 0.348 0.293
Trec8-SK Best Dir 0.294 (0.281) 0.756 0.448 0.374

Two-Stage 0.278* 0.730 0.426 0.358
Best JM 0.203 (0.191) 0.611 0.340 0.284

Web Trec8-SV Best Dir 0.267 (0.249) 0.699 0.408 0.325
Two-Stage 0.253 0.680 0.398 0.330
Best JM 0.259 (0.243) 0.790 0.422 0.348

Trec8-LV Best Dir 0.275 (0.248) 0.752 0.410 0.343
Two-Stage 0.284 0.781 0.442 0.362

The best number for each measure is shown in boldface. An asterisk (*) indicates that the difference between
the two-stage smoothing performance and the best one-stage smoothing performance is statistically significant
according to the Wilcoxin signed rank test at the level of 0.05.

median average precision for all the parameter values that are tried.7 We see
that for Jelinek–Mercer the sensitivity is clearly higher on verbose queries
than on keyword queries; the median is usually much lower than the best
performance for verbose queries. This means that it is much harder to tune the
λ in Jelinek–Mercer for verbose queries than for keyword queries. Interestingly,
for Dirichlet prior, the median is often just slightly below the best, even when
the queries are verbose. (The worst cases are significantly lower though.) From
the sensitivity curves in Figure 7, we see that as long as we set a relatively
large value for µ in the Dirichlet prior, the performance will not be much worse
than the best performance, and the median is most likely at a large value for
µ. This immediately suggests that we can expect to perform reasonably well
if we simply set µ to some “safe” large value. However, it is clear from the
results in Table VIII and Table IX, that such a simple approach would not
perform so well as our parameter estimation methods. Indeed, the two-stage

7For Jelinek–Mercer, we tried 13 values {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,0.7,0.8,0.9,0.95, 0.99};
for Dirichlet prior, we tried 10 values {100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}.

ACM Transactions on Information Systems, Vol. 22, No. 2, April 2004.



A Study of Smoothing Methods for Language Models • 211

performance is always better than the median, except for three cases of short-
keyword queries when it is slightly worse. Since the Dirichlet prior smoothing
dominates the two-stage smoothing effect for these short-keyword queries (due
to “little noise”), this somehow suggests that the leave-one-out method might
have underestimated µ.

Note that, in general, Jelinek–Mercer has not performed as well as Dirichlet
prior in all our experiments. But, in two cases of verbose queries (Trec8-SV and
Trec8-LV on the Trec7/8 database), it does outperform Dirichlet prior. In these
two cases, the two-stage smoothing method performs either as well as or better
than the Jelinek–Mercer. Thus, the two-stage smoothing performance appears
to always track the best performing single method at its optimal parameter
setting.

The performance of two-stage smoothing does not reflect the performance of a
“full-fledged” language modeling approach, which would involve more sophisti-
cated feedback models [Lafferty and Zhai 2001; Lavrenko and Croft 2001; Zhai
and Lafferty 2001a]. Thus, it is really not comparable with the performance
of other TREC systems. Yet some of the performance figures shown here are
actually competitive when compared with the performance of the official TREC
submissions (e.g., the performance on the TREC-8 ad hoc task and the TREC-8
web track).

These results of the two-stage smoothing method are very encouraging, es-
pecially because there is no ad hoc parameter tuning involved in the retrieval
process with the approach. Both µ and λ are automatically estimated based on a
specific database and query; µ is completely determined by the given database,
and λ is determined by the database and the query together. The method ap-
pears to be quite robust according to our experiments with all the different
types of queries and different databases.

12. CONCLUSIONS

We have studied the problem of language model smoothing in the context of
information retrieval. By rewriting the query-likelihood retrieval model us-
ing a smoothed document language model, we derived a general retrieval for-
mula where the smoothing of the document language model can be interpreted
in terms of several heuristics used in traditional models, including TF-IDF
weighting and document length normalization. We then examined three popu-
lar interpolation-based smoothing methods (Jelinek–Mercer method, Dirichlet
priors, and absolute discounting), as well as their backoff versions, and eval-
uated them using several large and small TREC retrieval testing collections.
We find that the retrieval performance is generally sensitive to the smooth-
ing parameters, suggesting that an understanding and appropriate setting of
smoothing parameters is very important in the language modeling approach.

We have made several interesting observations that help us understand each
of the methods better. The Jelinek–Mercer method generally performs well, but
tends to perform much better for verbose queries than for keyword queries.
The optimal value of λ has a strong correlation with the query type. For key-
word queries, the optimal value is generally very small (around 0.1), while for
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verbose queries, the optimal value is much larger (around 0.7). The Dirichlet
prior method generally performs well, but tends to perform much better for key-
word queries than for verbose queries. The optimal value of µ appears to have
a wide range (500–10000) and usually is around 2,000. A large value is “safer,”
especially for verbose queries. The absolute discounting method performs well
on keyword queries, but not very well on verbose queries. Interestingly, there
is little variation in the optimal value for δ (generally around 0.7 in all cases).
While used successfully in speech recognition, the backoff strategy did not work
well for retrieval in our evaluation. All interpolated versions perform signifi-
cantly better than their backoff version.

A very interesting observation is that the effect of smoothing is strongly
correlated with the type of queries. The performance is generally more sensitive
to smoothing for verbose queries than for keyword queries. Verbose queries also
generally require more aggressive smoothing to achieve optimal performance.
This suggests that smoothing plays two different roles in the query likelihood
retrieval method. One role is to improve the accuracy of the estimated document
language model (estimation role), while the other is to accommodate generation
of noninformative common words in the query (query modeling role). This dual
role of smoothing can also explain why the backoff versions of all the smoothing
methods do not work well; it is because the query modeling role is not well
supported in these methods.

The experimental results further suggest that Dirichlet prior may be good for
the estimation role, while Jelinek–Mercer may be good for the query modeling
role. This then motivates us to propose a two-stage smoothing strategy that com-
bines Dirichlet prior with Jelinek–Mercer and explicitly decouples the two roles
of smoothing (Dirichlet prior for the estimation role and Jelinek–Mercer for the
second). We provide empirical evidence to show that the two-stage smoothing
method indeed results in a more meaningful pattern of the smoothing param-
eters. Specifically, with two-stage smoothing, the optimal setting of Jelinek–
Mercer λ is more correlated with the query while that of Dirichlet prior µ is
more related to the document collection. This suggests that it is possible to op-
timize µ based on only the document collection without depending on queries
and similarly optimize λ primarily based on queries.

In order to estimate the smoothing parameters automatically in the two-
stage smoothing method, we formally study this method in the risk minimiza-
tion framework. We show that such a two-stage smoothing method is a spe-
cial case of a family of more general two-stage language models, which can
be derived from the risk minimization retrieval framework by using a special
loss function. The derivation suggests that we can use a leave-one-out method
for estimating the first-stage Dirichlet prior parameter and a mixture model
for estimating the second-stage interpolation parameter. These methods al-
low us to set the retrieval parameters automatically, yet adaptively accord-
ing to different databases and queries. Evaluation on five different databases
and four types of queries indicates that the two-stage smoothing method with
the proposed parameter estimation scheme consistently gives retrieval perfor-
mance that is close to, or better than, the best results attainable using a single
smoothing method, achievable only through an exhaustive parameter search.
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The effectiveness and robustness of the two-stage smoothing approach, along
with the fact that there is no ad hoc parameter tuning involved, make it a solid
baseline approach for evaluating retrieval models.

There are several interesting future research directions. First, we could eval-
uate other more sophisticated smoothing algorithms, such as Good–Turing
smoothing [Good 1953], Katz smoothing [Katz 1987], and Kneser–Ney smooth-
ing [Kneser and Ney 1995]). Second, while we have shown that the automatic
two-stage smoothing gives retrieval performance close to the best results attain-
able using a single smoothing method, we have not yet analyzed the optimality
of the estimated parameter values in the two-stage parameter space. It would
be interesting to see the relative optimality of the estimated µ and λ when fixing
one of them. Measures such as perplexity can also be used to gauge the optimal-
ity of the estimated parameters. Third, it would also be interesting to explore
other estimation methods. For example, µ might be regarded as a hyperparam-
eter in a hierarchical Bayesian approach. For the estimation of the query model
parameter λ, it would be interesting to try different query background models.
One possibility is to estimate the background model based on resources such as
past queries, in addition to the collection of documents. Finally, it is possible to
exploit the query background model to address the issue of redundancy in the
retrieval results. Specifically, a biased query background model may be used
to represent/explain the subtopics that a user has already encountered (e.g.,
through reading previously retrieved results), in order to focus ranking on the
new subtopics in a relevant set of documents.
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